Control of hnRNP A1 alternative splicing: an intron element represses use of the common 3' splice site.

نویسندگان

  • M J Simard
  • B Chabot
چکیده

Alternative splicing of exon 7B in the hnRNP A1 pre-mRNA produces mRNAs encoding two proteins: hnRNP A1 and the less abundant A1B. We have reported the identification of several intron elements that contribute to exon 7B skipping. In this study, we report the activity of a novel element, conserved element 9 (CE9), located in the intron downstream of exon 7B. We show that multiple copies of CE9 inhibit exon 7B-exon 8 splicing in vitro. When CE9 is inserted between two competing 3' splice sites, a single copy of CE9 decreases splicing to the distal 3' splice site. Our in vivo results also support the conclusion that CE9 is a splicing modulator. First, inserting multiple copies of CE9 into an A1 minigene compromises the production of fully spliced products. Second, one copy of CE9 stimulates the inclusion of a short internal exon in a derivative of the human beta-globin gene. In this case, in vitro splicing assays suggest that CE9 decreases splicing of intron 1, an event that improves splicing of intron 2 and decreases skipping of the short internal exon. The ability of CE9 to act on heterologous substrates, combined with the results of a competition assay, suggest that the activity of CE9 is mediated by a trans-acting factor. Our results indicate that CE9 represses the use of the common 3' splice site in the hnRNP A1 alternative splicing unit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization.

The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the ...

متن کامل

Control of 3' splice site choice in vivo by ASF/SF2 and hnRNP A1.

The constitutive splicing factor ASF/SF2 has been shown to affect the choice between alternative splice sites by favoring the proximal as opposed to the distal choice. HnRNP A1 antagonizes ASF/SF2 by promoting the distal choice for competing 5' splice sites. We have tested the in vivo effects of these proteins on alternative 3' splice site choices. Cotransfection of a dihydrofolate reductase-ca...

متن کامل

hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure.

The removal of the second intron in the HIV-1 rev/tat pre-mRNAs, which involves the joining of splice site SD4 to SA7, is inhibited by hnRNP A1 by a mechanism that requires the intronic splicing silencer (ISS) and the exon splicing silencer (ESS3). In this study, we have determined the RNA secondary structure and the hnRNP A1 binding sites within the 3' splice site region by phylogenetic compar...

متن کامل

hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly.

Pre-mRNA splicing is catalyzed through the activity of the spliceosome, a dynamic enzymatic complex. Forcing aberrant interactions within the spliceosome can reduce splicing efficiency and alter splice site choice; however, it is unknown whether such alterations are naturally exploited mechanisms of splicing regulation. Here, we demonstrate that hnRNP L represses CD45 exon 4 by recruiting hnRNP...

متن کامل

SRp30c is a repressor of 3' splice site utilization.

Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 19  شماره 

صفحات  -

تاریخ انتشار 2000